

OPPORTUNITIES PRESENTED BY THE ENERGY TRANSITION

80TH CONFERENCE + EXHIBITION

COPENHAGEN | DENMARK

11-14 JUNE 2018 WWW.EAGEANNUAL2018.ORG

Accounting for Processing Errors in AVO/AVA Data

Rasmus Boedker Madsen¹, Egon Noermark², Thomas Mejer Hansen¹

¹Niels Bohr Institute University of Copenhagen

²Institut for Geoscience University of Aarhus

14th of June

Motivation

AVO data Processing

Processing/modeling errors

One processing error realization Estimation of processing error

Inversion

Linear Bayesian Inversion Accounting for modeling error Results

Conclusions

Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization Estimation of processing error

Inversion

Linear Bayesian Inversion Accounting for modeling error Results

Conclusion

Convolutional model

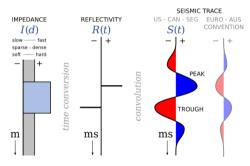
- Seismic traces can be emulated by the convolution of a seismic reflectivity series and a wavelet
 - ▶ Reflectivities come from Zoeppritz equations or approximations hereof
 - ▶ Wavelet can be e.g. be estimated from well logs

Convolutional model

$$S(t) = W(t) * R(t)$$

$$\equiv \int_0^{t_s} W(\tau) R(t - \tau) d\tau \quad (1)$$

where S(t) is the seismic trace, R(t) is the reflectivity series (earth response) such as given in for example Zoeppritz equations, and W(t) is the wavelet (source-time function) where t_s is the duration of the source input



reflectivity * wavelet + noise = seismic

AVO data assumptions

- Layers are:
 - ► Flat
 - ► Homogeneous
 - Isotropic

AVO data benefits

- ► Gives rise to the discipline of AVO analysis ("the search for bright/dim spots")
- ▶ Use fast convolutional model as forward model in inversion
- ▶ Data reduction

AVO data benefits

- ► Gives rise to the discipline of AVO analysis ("the search for bright/dim spots")
- Use fast convolutional model as forward model in inversion
- ▶ Data reduction
- ▶ How does one go from seismic raw data to seismic AVO data?

AVO data benefits

- ► Gives rise to the discipline of AVO analysis ("the search for bright/dim spots")
- Use fast convolutional model as forward model in inversion
- Data reduction
- ▶ How does one go from seismic raw data to seismic AVO data?
- ▶ Processing!

Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization Estimation of processing error

Inversion

Linear Bayesian Inversion Accounting for modeling error Results

Conclusion

Processing Goals

- ightharpoonup Raw seismic data ightharpoonup AVO (AVA) seismic data
- ▶ AVO: Amplitude Variation with Offset
 - ▶ Follow the assumptions of Zoeppritz equations, e.g. flat layers, plane wave
- ▶ Process preserve seismic amplitudes and accurately determine the spatial coordinates of each sample

Processing

Factors affecting AVO data

multiple interference	array effects		
temporal tuning	instrumentation		
mode conversions	source strength & consistency		
transmission losses	receiver coupling		
effect of overburden	RNMO		
reflector curvature	processing algorithms		
spherical divergence	NMO stretch		
phase changes with offset	geology		
noise and interference	ground roll		
attenuation, dispersion,	random noise		
absorption			

Table1: Factors which influence AVO

Figure: Table taken from: Downton et al. 2000, AVO for managers : pitfalls and solutions, Crewes Research Report 12

► Trade-off: Noise suppression and isolation of reflectivities / biasing or corrupting the reflectivity variations

Processing

Issues

- ▶ Heuristic procedure → error prone (Human errors?)
- Introduction of biases/errors?
- Motivation:
 - How big are these biases/errors? (Inability to process raw data in accordance with AVO assumptions)
 - ► Is it significant?
 - Can it be quantified and estimated?

Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization

Estimation of processing error

Inversion

Linear Bayesian Inversion

Accounting for modeling error

Results

Conclusions

- Consider one subsurface realization m
- ► To generate one processing error we compare two ways of obtaining the forward response for this realization
- ► Convolutional model: $\mathbf{d}_{\text{obs,conv}} = \mathbf{g}_{\text{conv}}(\mathbf{m}) = \mathbf{Gm}$
- ▶ Processing raw data: $\mathbf{d}_{\text{obs,proc}} = \mathbf{g}_{\text{proc}}(\mathbf{m})$
 - $\,\blacktriangleright\,$ $g_{proc} :$ Generate raw data from m \to process to AVA data
- ▶ Modeling (processing) error: $\mathbf{d}_{e} = \mathbf{d}_{obs,conv} \mathbf{d}_{obs,proc}$

Well log \mathbf{m}

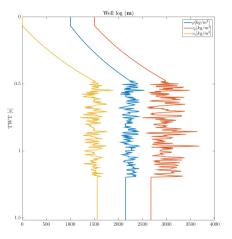
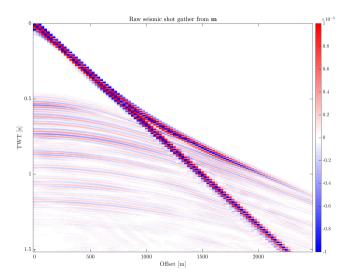


Figure: Synthetic log. Known synthetic velocity model of the subsurface which enables ideal the conditions for processing

Well log $\mathbf{m} \to \mathsf{raw}$ data

- ► Finite difference solver is used to do full waveform modeling
- ► Staggered grid fourth order space, second order time based on (Levander, 1988; Virieux, 1986).
- ▶ Absorbing boundary conditions (weak multiples) the PML strategy is adapted from (Collino & Tsogka, 2001).
- ▶ Basically noise-free (except for modeling errors from the finite difference scheme)
- ▶ Wavelet can be extracted relatively exactly from the finite difference solution.

Raw seismic data from m

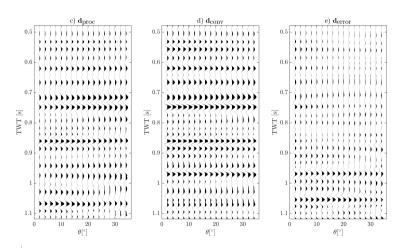


Processing sequence

- Processing done in Promax software
 - Load raw seismic data
 - Spherical divergence (constant velocity plus 6 dB/sec)
 - ▶ NMO-correction (with known background velocity model)
 - ► FK-filtering (apparent velocity = 1500 m/s)
 - Offset to angle conversion

Processing sequence

Modeling error



Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization

Estimation of processing error

Inversion

Linear Bayesian Inversion

Accounting for modeling error

Results

Conclusions

Gaussian covariance model

Consider a sample consisting of N realizations of the modeling error $(\mathbf{d}_e^1, \mathbf{d}_e^2, \dots, \mathbf{d}_e^N)$. This sample is setup in matrix form as:

$$\mathbf{D}_{e} = [\mathbf{d}_{e}^{1}, \mathbf{d}_{e}^{2}, \dots, \mathbf{d}_{e}^{N}] \tag{2}$$

The mean modeling error is estimated for each individual point j as:

$$d_{\mathsf{T}_{\mathsf{app}}}^{\mathsf{j}} = \frac{1}{\mathsf{N}} \sum_{\mathsf{i}=1}^{\mathsf{N}} \mathbf{D}_{\mathsf{e}}^{\mathsf{i},\mathsf{j}} \tag{3}$$

where the mean for the *j*th data point is the arithmetic mean of all i = 1, ..., N realizations from the sample.

Gaussian covariance model

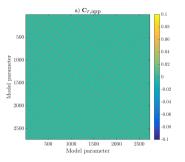
$$\mathbf{d}_{\mathsf{Tapp}} = \left[\mathsf{d}_{\mathsf{T}_{\mathsf{app}}}^1, \mathsf{d}_{\mathsf{T}_{\mathsf{app}}}^2, \dots, \mathsf{d}_{\mathsf{T}_{\mathsf{app}}}^{\mathsf{N}_{\mathsf{d}}} \right] \tag{4}$$

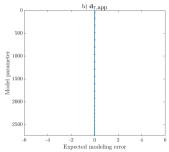
The covariance of the modeling error is estimated as:

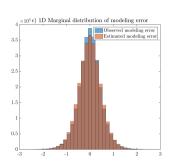
$$\mathbf{C}_{\mathsf{Tapp}} = \frac{1}{\mathsf{N}} \left[\mathbf{D}_{\mathsf{e}} - \mathbf{D}_{\mathsf{Tapp}} \right] \left[\mathbf{D}_{\mathsf{e}} - \mathbf{D}_{\mathsf{Tapp}} \right]^{\mathsf{T}} \tag{5}$$

where $\mathbf{D}_{\mathsf{T}_{\mathsf{app}}} = \left[\mathbf{d}_{\mathsf{T}_{\mathsf{app}}}^\mathsf{T}, \mathbf{d}_{\mathsf{T}_{\mathsf{app}}}^\mathsf{T}, \cdots, \mathbf{d}_{\mathsf{T}_{\mathsf{app}}}^\mathsf{T}\right]$ is a matrix containing N repetitions of the mean vector of Equation 4.

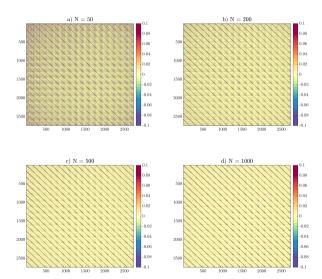
Gaussian model







Sample size



Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization Estimation of processing error

Inversion

Linear Bayesian Inversion

Accounting for modeling error Results

Conclusions

Linear Bayesian Inversion

Posterior

The posterior probability density of the model parameters $\widetilde{\mathbf{m}}$ is described as a Gaussian probability distribution $\mathcal{N}(\widetilde{\mathbf{m}},\widetilde{\mathbf{C}}_{\mathsf{M}})$ with mean:

$$\widetilde{\mathbf{m}} = \mu_{\mathsf{M}} + (\mathsf{WADC}_{\mathsf{M}})^{\mathsf{T}} \mathbf{C}_{\mathsf{D}}^{-1} (\mathbf{d}_{\mathsf{obs}} - \mathsf{WAD}\mu_{\mathsf{M}})$$
 (6)

and covariance:

$$\widetilde{\mathbf{C}}_{\mathsf{M}} = \mathbf{C}_{\mathsf{M}} - (\mathbf{W}\mathbf{A}\mathbf{D}\mathbf{C}_{\mathsf{M}})^{\mathsf{T}}\mathbf{C}_{\mathsf{D}}^{-1}\mathbf{W}\mathbf{A}\mathbf{D}\mathbf{C}_{\mathsf{M}} \tag{7}$$

where \mathbf{d}_{obs} is the observed data. Here we use $\mathbf{d}_{\text{obs,proc}}$

Motivation

AVO data

Processing

Processing/modeling errors

One processing error realization Estimation of processing error

Inversion

Linear Bayesian Inversion

Accounting for modeling error

Results

Conclusions

Accounting for modeling error

- Consider three noise models:
 - ▶ Case 1: Account for modeling (processing) error: $\mathbf{C}_{D} = \mathbf{C}_{\mathsf{Tapp}}$
 - Use uncorrelated noise model: $\hat{\mathbf{C}}_{D} = \mathbf{C}_{d}$
 - ► Case 2: Assume low noise on data (S/N = 9)
 - ▶ Case 3: Assume high noise on data (S/N = 0.4)

Motivation

AVO data Processing

Processing/modeling errors

One processing error realization Estimation of processing error

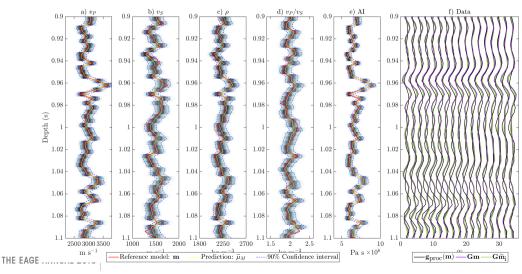
Inversion

Linear Bayesian Inversion Accounting for modeling error Results

Conclusions

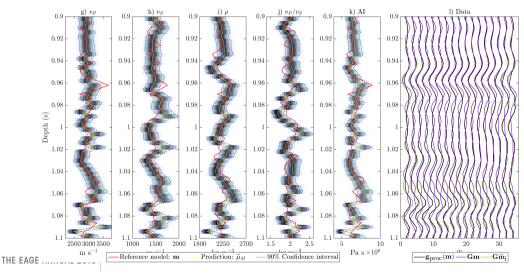
Inversion

Case 1: C_{Tapp}



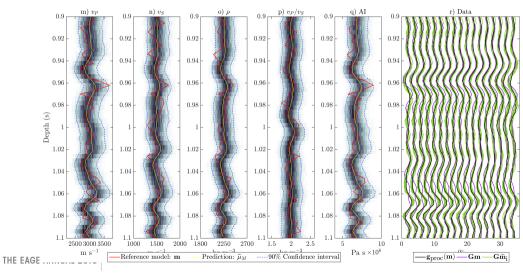
Inversion

Case 2: C_d (S/N = 9)



Inversion

Case 3: C_d (S/N = 0.4)



Inversions summarized

Model	RMSD	Entropy (H)	Log-likelihood
$C_{D} = C_{Tapp}$	0.0306	-1135.1	-243.7
$\mathbf{C}_{D} = \mathbf{C}_{d} \; (S/N{=}9)$	0.0734	-1155.4	-50760.3
$\mathbf{C}_{D} = \mathbf{C}_{d} \; (S/N{=}0.4)$	0.0582	-790.9	-248.7

Table: rmsd, entropy and log-likelihood for inversion cases

Conclusions

- ► Substantial significance of processing error (S/N=2)
 - ► Even in "Best-case" scenario (known velocity model, noise-free raw data etc.)
- Processing (+ simulation) error can in this case be reasonably described by a Gaussian covariance model
 - Qualitative visual results + 1D marginals
 - ► Takes roughly 500+ samples to reasonably estimate error
- Inversion results improves
 - Prediction
 - Resolution
- ▶ Offers a computationally efficient setup compared with running metropolis sampler with full waveform forward ($\sim 500 \ll \sim 1.000.000$)

Conclusions

Questions

Questions

Quantifiable measures

Entropy

$$H = \frac{n_m}{2} + \frac{n_m}{2} \ln(2\pi) + \frac{n_m}{2} \ln(|\widetilde{\mathbf{C}}_{\mathsf{M}}|)$$
 (8)

 n_m is the dimensionality of the model parameters

RMSD

$$RMSD = \sqrt{\frac{\sum_{i=1}^{n} (\mathbf{m}_{i} - \widetilde{\mathbf{m}}_{i})^{2}}{n}}$$
 (9)

Likelihood

$$f(\mathbf{m}_{\text{ref}}|\mathcal{N}(\widetilde{\mathbf{m}},\widetilde{\mathbf{C}}_{\text{M}})) \sim \exp(-0.5(\mathbf{m}_{\text{ref}} - \widetilde{\mathbf{m}})^{\mathsf{T}}\widetilde{\mathbf{C}}_{\text{M}}^{-1}(\mathbf{m}_{\text{ref}} - \widetilde{\mathbf{m}}))$$
 (10)